拓扑缺陷是指晶格中的扩展变形,它们对局部缺陷和退火具有鲁棒性,能够显著改变材料的整体性质。这种缺陷在液晶、超导体、自旋冰等硬凝聚态物质以及单细胞生物、水螅、运动细菌群落等软物质系统中均有广泛研究。然而,拓扑缺陷的形成动力学和纳米尺度三维结构尚不清楚,阻碍了其在纳米制造中的应用。拓扑缺陷在液晶中首次得到普遍研究,因为能使用可见光技术。在硬凝聚态物质中,拓扑缺陷包括狄拉克链、自旋冰中的磁单极、斯格明子以及超导体中的涡旋和磁通管。最近,拓扑缺陷和纹理也在单细胞生物水螅的肌动蛋白纤维、运动细菌群落以及双壳类贝类的珍珠层中被发现,它们在发育和再生中起关键作用。这些研究揭示了拓扑缺陷在物质系统中广泛存在的重要性,然而,拓扑缺陷在软物质和硬物质之间的“桥梁”系统中是不是真的存在以及如何形成,仍是一个悬而未决的问题。为了研究拓扑缺陷在软凝聚态物质中的表现,瑞士保罗谢勒研究所D. Karpov以及日本住友化学株式会社J. Llandro等团队合作利用嵌段共聚物(BCP)自组装作为实验实现软凝聚态物质系统的一条便捷途径。BCP自组装能轻松实现各种形态,其性质能够最终靠摩尔质量、共聚物组成和处理(退火)条件进行调节。其中,三维有序连续网络相对罕见,单钻石形态作为一种三维有序网络,由于其潜在的生成完全光子带隙的能力,引起了极大的研究兴趣。然而,即使在添加剂丰富的BCP中,生成有序的单钻石网络也极具挑战性。本研究解决了在纯BCP模板中生成有序单钻石网络并观察拓扑缺陷的问题。研究人员使用基于同步辐射的硬X射线纳米断层扫描,成像了一个直径8 µm、高度3 µm的圆柱形样品,其中包含一个600 nm厚的单钻石网络层。通过高达11.2 nm的3D空间分辨率,解析了单个单钻石晶胞的结构,并分析了网络的长程有序性。研究之后发现了一对拓扑缺陷——一种“彗星”状和一种“三叶结”状纹理,它们出现在不同取向的钻石晶粒边界上。通过一系列分析这些缺陷的绕数,确认了其拓扑性质,并推测了它们的形成机制。研究表明,拓扑缺陷是同时从BCP/基底界面出现的,从而平衡了系统的拓扑电荷并消散了积累的应变。这项研究表明,通过操控基底几何形状能控制BCP网络中中尺度拓扑缺陷的形成,解决了拓扑缺陷在纳米尺度三维结构中的研究难题。
2. 实验通过对BCP(嵌段共聚物)模板制备的单钻石网络的研究,观察到了形态上类似液晶中拓扑缺陷的彗星状和三叶结状纹理。这些缺陷具有相等且相反的半整数拓扑电荷,显示出典型的硬物质行为。通过一系列分析网络中的应变场,确定了这些拓扑缺陷的拓扑性质,并推测其形成机制是由BCP/基底界面同时出现的,从而平衡系统的拓扑电荷并消散积累的应变。
本文首次在单钻石网络中观察到中尺度拓扑缺陷,并通过高分辨率X射线纳米断层扫描技术成功解析了约70,000个单钻石晶胞的三维结构。这一突破性进展不仅揭示了拓扑缺陷在这种自组装材料中的新型表现形式,还为理解这些缺陷的形成和行为提供了详细的三维数据。研究之后发现,彗星状和三叶结状的拓扑缺陷在不同取向的钻石晶粒之间的边界处形成,这与液晶中观察到的拓扑电荷模式在形态上相似,但在行为上却展现出硬物质特征。这一发现强调了拓扑缺陷在材料中的复杂性,并揭示了它们可能与材料的长程有序性和应变分布紧密关联。这表明,拓扑缺陷不仅在理论物理中具备极其重大意义,也在实际材料设计中扮演着关键角色。此外,本文还提出,通过操控基底几何形状可以有效控制BCP网络中中尺度拓扑缺陷的形成。这一新发现为未来纳米材料的设计和缺陷工程提供了新的思路,尤其是在优化材料性能和探索新型材料特性方面。通过调控基底的几何形状,能轻松实现对材料缺陷的精确控制,从而推动自组装材料在纳米技术和材料科学中的应用。总之,本文的研究为拓扑物理学和纳米材料科学开辟了新的研究方向,并为未来的材料创新提供了宝贵的理论依照和实践指导。原文详情:Karpov, D., Djeghdi, K., Holler, M. et al. High-resolution three-dimensional imaging of topological textures in nanoscale single-diamond networks. Nat. Nanotechnol. (2024).
2024年生物安全柜中标盘点:单次斩获百台订单,哪些品牌及型号更受市场青睐?
90后天才少年曹原团队,如何用MEMS技术实时调控二维材料的界面特性!
突破3D打印瓶颈,科学家提出无聚合物高精度金属与合金自由空间直写技术!
半导体情报,科学家开创超薄高κ氧化物的理想平台与2D晶体管集成新方法!